Criterios de Divisibilidad

NÚMEROS Y OPERACIONES

6º EDUCACIÓN PRIMARIA

Los criterios de divisibilidad son aquellas reglas matemáticas que nos permiten descubrir con facilidad y sin la necesidad de resolver una división, si un número es o no divisible entre otro.

Nos ayudan a reducir y simplificar las fracciones, hallar el máximo común divisor y el mínimo común múltiplo de varios números, descomponer cualquier número en factores primos, identificar si un número es primo o compuesto...

Conocer y aplicar el criterio de divisibilidad del 2

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 2 si termina en cero o en número par, es decir, 0, 2, 4, 6 u 8.

Ejemplo: 1 3 4 termina en cuatro (número par) y, por tanto, es divisible por 2.

Conocer y aplicar el criterio de divisibilidad del 3

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 3 si el resultado de la suma de todas sus cifras es un múltiplo de 3, es decir: 3, 6, 9, 12, 15, 18, 21, 24, 27...

Ejemplo: 3 1 5 = 3 + 1 + 5 = 9 y, por tanto, será divisible por 3.

Conocer y aplicar el criterio de divisibilidad del 5

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 5 si el valor de su última cifra (unidades) es cero o cinco.

Ejemplo: 2 2 0 termina en cero y, por tanto, es divisible por 5.

Conocer y aplicar el criterio de divisibilidad del 7

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 7 cuando la diferencia entre el número sin la cifra de las unidades y el doble de la cifra de las unidades es cero o un múltiplo de 7.

Ejemplo: 5 4 6 = 5 4 - ( 2 x 6 ) = 5 4 - 1 2 = 42, el cual es múltiplo de 7 porque 7 x 6 = 42

Conocer y aplicar el criterio de divisibilidad del 9

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 9 si el resultado de la suma de todas sus cifras es un múltiplo de 9, es decir: 9, 18, 27, 36, 45, 54, 63, 72, 81...

Ejemplo: 3 . 5 4 6 = 3 + 5 + 4 + 6 = 1 8 y, por tanto, será divisible por 9.

Conocer y aplicar el criterio de divisibilidad del 10

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 10 si su última cifra (unidades) es cero.

Ejemplo: 5 7 0 termina en cero y, por tanto, es divisible por 10.

Conocer y aplicar el criterio de divisibilidad del 11

6º EDUCACIÓN PRIMARIA

Un número natural es divisible por 11 cuando el resultado de la suma de las cifras de posición impar, menos la suma de las cifras de posición par, es cero o un múltiplo de 11.

Ejemplo: 5 9 . 6 9 7 = ( 5 + 6 + 7 ) - ( 9 + 9 ) = 0

Hallar los números primos y compuestos de cualquier número natural

6º EDUCACIÓN PRIMARIA

Un número es primo cuando solamente tiene dos divisores... él mismo y la unidad. Por su parte, un número es compuesto cuando tiene más de dos divisores.

¡Muy importante! El número 1 no es ni primo ni compuesto.

video explicacion matematicas

El matemático griego Eratóstenes de Cirene (276 - 194 a.C.) elaboró una tabla con los números primos y compuestos del 1 al 100 a la que denominó la "criba de Eratóstenes".

¿Serías capaz de replicarla? ¡Te proponemos unas actividades para que lo consigas!

Calcular los múltiplos de un número natural

6º EDUCACIÓN PRIMARIA

¿Sabes qué son y para qué sirven los múltiplos de un número natural?

Los múltiplos de cualquier número natural se obtienen multiplicando dicho número por 0, 1, 2, 3, 4... es decir, siguiendo su tabla de multiplicar de manera ordenada.

¡No lo olvides! El número 0 es múltiplo de todos los números.

video explicacion matematicas

Te facilitamos la explicación para que puedas aprender qué son los múltiplos y cómo hallarlos a partir de cualquier número natural:

explicacion y ejemplo hallar multiplos de un numero natural

Calcular los divisores de un número natural

6º EDUCACIÓN PRIMARIA

¿Sabes qué son y para qué sirven los divisores de un número natural?

Un número es divisor de otro si, al realizar la división entre sí, la división es exacta siendo el residuo cero.

¡Y recuerda! El número 1 es divisor de todos los números.

video explicacion matematicas

Te facilitamos la explicación para que puedas aprender qué son los divisores y cómo hallarlos a partir de cualquier número natural.

Si deseamos saber cuáles son los divisores de cualquier número natural tendríamos que dividir todos los números desde el 1 hasta el número al que deseamos llegar (en este caso, 8) y consideraríamos divisores aquellos en que la división fuese exacta:

explicacion calcular divisores de un numero natural

Como habrás podido comprobar, hallar los divisores de un número puede ser una tarea costosa si utilizamos números más grandes y, es por ello, que te vamos a enseñar el método más utilizado para calcular los divisores de cualquier número natural de forma rápida y sencilla:

DESCOMPOSICIÓN POR FACTORIZACIÓN DE NÚMEROS PRIMOS

Hallar el Mínimo Común Múltiplo (MCM) de dos números naturales dados

6º EDUCACIÓN PRIMARIA

Te presentamos una serie de actividades imprimibles, un tutorial y un juego educativo para que comprendas qué es el Mínimo Común Múltiplo y, además, aprendas fácilmente a calcularlo entre dos números naturales.

video explicacion matematicas

Seguidamente, te mostramos los dos procedimientos existentes para la obtención del Mínimo Común Múltiplo de dos números naturales: el "sistema de múltiplos" y la "descomposición en factores primos":

CÁLCULO DEL M.C.M. POR EL SISTEMA DE MÚLTIPLOS

Hallaremos los múltiplos de los dos números naturales siguiendo sus tablas de multiplicar ordenadamente. El Mínimo Común Múltiplo será el menor de los múltiplos comunes:

CÁLCULO DEL M.C.M. POR FACTORIZACIÓN

Partiendo de dos o más números naturales y mediante su descomposición expresada como el producto de factores primos (es decir, 1, 2, 3, 5, 7, 11, 13...), el Mínimo Común Múltiplo (m.c.m.) se hallará al multiplicar todos los factores comunes y no comunes elevados a su mayor exponente:

explicacion mcm por factorizacion

Hallar el Mínimo Común Múltiplo (MCM) de tres números naturales dados

6º EDUCACIÓN PRIMARIA

Te presentamos unas actividades en formato PDF junto con su explicación para que comprendas paso a paso cómo hallar el Mínimo Común Múltiplo (MCM) de tres números naturales.

video explicacion matematicas

CÁLCULO DEL M.C.M. POR EL SISTEMA DE MÚLTIPLOS

Hallaremos los múltiplos de los tres números naturales siguiendo sus tablas de multiplicar ordenadamente. El Mínimo Común Múltiplo será el menor de los múltiplos comunes:

CÁLCULO DEL M.C.M. POR FACTORIZACIÓN

Partiendo de dos o más números naturales y mediante su descomposición expresada como el producto de factores primos (es decir, 1, 2, 3, 5, 7, 11, 13...), el Mínimo Común Múltiplo (m.c.m.) se hallará al multiplicar todos los factores comunes y no comunes elevados a su mayor exponente:

explicacion y ejemplo calculo minimo comun multiplo de tres numeros

Hallar el Máximo Común Divisor (MCD) de dos números naturales dados

6º EDUCACIÓN PRIMARIA

Observa el vídeo explicativo y aprenderás a hallar el Máximo Común Divisor (MCD) de dos números naturales. Después, practica con la actividad online y con nuestras fichas descargables.

video explicacion matematicas

CÁLCULO DEL M.C.D. POR FACTORIZACIÓN

Partiendo de dos o más números naturales y mediante su descomposición expresada como el producto de factores primos (es decir, 1, 2, 3, 5, 7, 11, 13...), el Máximo Común Divisor (m.c.d.) se hallará al multiplicar todos los factores comunes elevados a su menor exponente:

explicacion y ejemplo maximo comun divisor dos numeros naturales

El matemático y geómetra griego Euclides (325 - 265 a.C.), también conocido como el "padre de la geometría", desarrolló un algoritmo para hallar el máximo común divisor de dos números naturales:

- Si al dividir el número mayor entre el número menor la división es exacta, el m.c.d. será el valor del divisor.

- Si al dividir el número mayor entre el número menor la división es inexacta, el m.c.d. será el valor del residuo (resto).

Hallar el Máximo Común Divisor (MCD) de tres números naturales dados

6º EDUCACIÓN PRIMARIA

Te presentamos unos ejercicios en formato PDF junto con su explicación para que comprendas paso a paso cómo hallar el Máximo Común Divisor (MCD) de tres números naturales.

video explicacion matematicas

CÁLCULO DEL M.C.D. POR FACTORIZACIÓN

Partiendo de tres o más números naturales y mediante su descomposición expresada como el producto de factores primos (es decir, 1, 2, 3, 5, 7, 11, 13...), el Máximo Común Divisor (m.c.d.) se hallará al multiplicar todos los factores comunes elevados a su menor exponente:

ejemplo y explicacion maximo comun divisor 3 numeros